Dr. Marques Sophie Office 519 Number theory

Fall Semester 2013 marques@cims.nyu.edu

Problem Set # 8

Exercise 1: (*) 4 points Let ϕ be Euler's function. Show that $\phi(n^m) = n^{m-1}\phi(n)$ for all natural number n, m.

Exercise 2: (\star) 4 points

Let N be a product of two distinct primes. Show that if we know $\varphi(N)$, then we can easily factorize N.

Exercise 3: (\star) 4 points

Find the last two digits of the decimal expansion of 3^{1123} (For example the last two digits of 1729 are 29).

Exercise 4: (\star) 4 points

Show that there is no solution to the equation $\phi(n) = 14$.

Exercise 5: (\star) 4 points

You receive a message that was encrypted using the RSA system with public key (65, 29), where 65 is the base and 29 is the exponent. The encrypted message in two blocks, is 3/2. Find the private key and decrypt the message.

1

 $^{^{1}(\}star) = easy , (\star\star) = medium, (\star\star\star) = challenge$